Solids Master Plan – Review of Desired Outcomes

- Replacement of aging infrastructure
- Make better use of valuable resources
- Project phasing to maintain reasonable utility rates
Solids Master Plan – Timeline Review

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Immediate Needs</td>
<td></td>
</tr>
<tr>
<td>(Phase I)</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td></td>
</tr>
<tr>
<td>Design and construction</td>
<td></td>
</tr>
<tr>
<td>Short term improvements</td>
<td></td>
</tr>
<tr>
<td>(Phase II)</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td></td>
</tr>
<tr>
<td>Design and construction</td>
<td></td>
</tr>
<tr>
<td>Long-term improvements</td>
<td></td>
</tr>
<tr>
<td>(Phase III)</td>
<td></td>
</tr>
<tr>
<td>Design and construction</td>
<td></td>
</tr>
</tbody>
</table>
Solids Master Plan – Project Milestones

- **Fall 2015**
 - Prioritize needs
 - Narrow down choices

- **Condition Assessment**
 - Winter 2016
 - Look at immediate needs

- **Set and Rank Criteria**

- **Spring 2016**

- **Develop Alternatives**

- **Final Report**
 - Fall 2016-Winter 2017

- Ongoing outreach to stakeholders
- Ongoing peer review
Today’s Meeting Agenda

• WPCP Capacity and Solids Loading
• Plan to Address Immediate Needs
• Regulatory Review of Biosolids
• Communication Update
• Discussion
• Paired Comparison Analysis - Exercise
Running 12 month WPCP Flows

Running 12 month Precipitation
(AVG = about 39.0)

Running Average
Annual Flow

WPCP Flow (MGD)

Date
Jan-90 Jan-95 Jan-00 Jan-05 Jan-10 Jan-15

Plant Capacity--History
Plant Capacity

- Based on Water Master Plan and Council of Governments population projections
- Includes usage change in Crystal City, reasonable rate of Inflow and Infiltration
- Should have adequate capacity beyond 2040
- Master Plans are done every 10-20 years—will target 2030 for the next one

<table>
<thead>
<tr>
<th>Year</th>
<th>Sanitary Flow Increase From 2010 (mgd)</th>
<th>Average Annual Plant Flow (mgd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>0</td>
<td>26.0 (actual)</td>
</tr>
<tr>
<td>2015</td>
<td>2.09</td>
<td>28.1</td>
</tr>
<tr>
<td>2020</td>
<td>3.82</td>
<td>29.8</td>
</tr>
<tr>
<td>2025</td>
<td>4.97</td>
<td>30.9</td>
</tr>
<tr>
<td>2030</td>
<td>5.79</td>
<td>31.8</td>
</tr>
<tr>
<td>2035</td>
<td>6.37</td>
<td>32.3</td>
</tr>
<tr>
<td>2040</td>
<td>6.72</td>
<td>32.7</td>
</tr>
</tbody>
</table>
Plant Capacity

Wastewater Flow Projections

- Recorded Plant Flow
- Projected Flow

Year

Influent (mgd)

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0
Solids Side Loading

- Solids side loading projections based on concentration of pollutants in influent
- Design of new solids processes will be based on current concentrations and projected flows
- Mass balance being performed on alternative technologies
 - (Mass balance: loadings into a process must equal loadings out)

\[\text{lbs} = X \quad \text{lbs} = Y \quad \text{lbs} = X - Y \]
Solids Side Loading

- Influent loadings of readily biodegradable carbon (BOD) and suspended solids are used as basis for sizing
- Generally using max month value for design

<table>
<thead>
<tr>
<th>Year</th>
<th>Projected Annual Average Flow (mgd)</th>
<th>Influent BOD (lb/day)</th>
<th>Influent TSS (lb/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Annual Average</td>
<td>Maximum Month</td>
<td>Annual Average</td>
</tr>
<tr>
<td>2015</td>
<td>28.1</td>
<td>78,300</td>
<td>111,700</td>
</tr>
<tr>
<td>2020</td>
<td>29.8</td>
<td>83,000</td>
<td>118,400</td>
</tr>
<tr>
<td>2040</td>
<td>32.7</td>
<td>91,100</td>
<td>130,000</td>
</tr>
<tr>
<td>Design Capacity</td>
<td>40</td>
<td>111,400</td>
<td>159,000</td>
</tr>
</tbody>
</table>
Plan to Address Immediate Needs

Five *Immediate Needs* projects identified:

- Gravity Thickeners
- Bar Screens
- Primary Scum Collection
- Motor Control Center in Preliminary Treatment Building
- Scum Concentrator

Equipment is old and condition is fair to poor; failure could have consequences beyond the process itself
Plan to Address Immediate Needs

- Condition assessment; alternatives analysis complete
- Draft business cases have been developed
- Conceptual design is next step
- Design engineer procurement has not yet started
Biosolids Regulations

 - Pollutants
 - Pathogens
 - Nutrients
- VA Biosolids Use Regulations
 - VA Dept of Health -1993
 - VA Dept of Environmental Quality (DEQ) -2008
- Local Governments
 - Ordinances
Types of Biosolids

- **Class A** - Exceptional Quality treated to levels that virtually eliminates disease-causing organisms/pathogens, low in heavy metals, and no distribution restrictions

- **Class B** - Less restrictive standards for content of metals and disease causing organisms and require more limitations/restrictions on use and distribution

- **Both Class A and Class B** - Protect human health and the environment
Biosolids Treatment

- Prevents Risk of Disease Infection

- Treatment includes high temp, pressure and pH to kill
 - Bacteria
 - Viruses
 - Parasites

- Processes include
 - Digestion
 - Lime Stabilization
 - Composting
 - Heat Treatment
Clean Water Act, Section 405 mandated risk-based limits for pollutants “which may adversely affect public health and the environment”

EPA Part 503 Regulations established Mean Trace Element Concentrations

Biosolids well below regulated Pollutant Concentration Limit
Biosolids Metal Concentrations (ppm)

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>CEILING CONC LIMIT</th>
<th>POLLUTANT CONC LIMIT (Class A Limit)</th>
<th>ARLINGTON BIOSOLID CONC - ANNUAL AVE (2015)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>75</td>
<td>41</td>
<td>3</td>
</tr>
<tr>
<td>Cadmium</td>
<td>85</td>
<td>39</td>
<td>2</td>
</tr>
<tr>
<td>Copper</td>
<td>4300</td>
<td>1500</td>
<td>137</td>
</tr>
<tr>
<td>Lead</td>
<td>840</td>
<td>300</td>
<td>19</td>
</tr>
<tr>
<td>Mercury</td>
<td>57</td>
<td>17</td>
<td>0.5</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>75</td>
<td>--</td>
<td>16 (MAX)</td>
</tr>
<tr>
<td>Nickel</td>
<td>420</td>
<td>420</td>
<td>9</td>
</tr>
<tr>
<td>Selenium</td>
<td>100</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>Zinc</td>
<td>7500</td>
<td>2800</td>
<td>363</td>
</tr>
</tbody>
</table>
Nutrient Management Plans

- Biosolids applied to land must also comply with all regulatory agronomic requirements such as Nutrient Management Plans (NMPs)

- NMPs regulated at State level - Virginia Department of Conservation and Recreation (DCR)

- Marketed Products/Brands require registration with Virginia Department of Agriculture and Consumer Services (VDACS)
Biosolids Regulations: What’s Changing?

- No Changes to Federal Regulations expected

- Changes to State Regulations with respect to nutrient management are already taking place

- It is likely that additional nutrient reduction strategies may be incorporated as promotion of complete restoration of the Chesapeake Bay by 2025 takes hold
Biosolids Regulations: What’s Changing?

- The seasonal window to land apply biosolids is shrinking

- On-site land application and management costs are on the rise

- Nutrient and energy recovery could help reduce quantities of solids applied to land and reduce nutrients of concern
Communications update

- Feedback: what’s working? What additional resources do we need?
Discussion
Evaluation Criteria: Exercise

Evaluation Criteria Goal
Ensures alternative selected best reflects Arlington County’s priorities

Paired Metric Comparison
Simple Decision Tool to define the relative importance of a number of different options
Evaluation Criteria: Exercise

Today’s Objectives:

- Perform Paired Metric Comparison for External Stakeholder Community

- Integrate Results to reflect Civic Associations and Commissions Input

- Incorporate Overall input into SMP and discuss any impacts that result
Evaluation Criteria - Grouping Reflects “Quadruple Bottom Line” Approach

- Capital Cost
- Annual O&M Cost
- Life Cycle Cost
- Financial Options/Risk
- End Use Control

- Flexibility
- Operability and Safety
- Constructability
- MOPO/Impacts on Plant
- Proven System/Technology
- Reliability

- Resource recovery potential
- Energy Intensity
- Carbon Footprint
- Regulatory Permits
- Gas and Product Quality

- Odor Generation Potential/Reduction
- Acceptability
- Hauling
Paired Metric Comparison

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>P</td>
<td>Q</td>
<td>R</td>
<td>S</td>
</tr>
</tbody>
</table>

Rating Scale:
1 - The listed objective is *slightly higher* in priority.
2 - The listed objective is *higher* in priority.
3 - The listed objective is *significantly higher* in priority.
Paired Metric Comparison Example

- Capital cost is slightly higher in priority than operating cost.
- Capital cost is significantly higher in priority than ease of operations and maintenance.
- Operating cost is higher in priority than ease of operations and maintenance.